Approved: January 23, 1996

MINUTES OF THE SENATE COMMITTEE ON COMMERCE.

The meeting was called to order by Chairperson Alicia Salisbury at 8:00 a.m. on January 22, 1996, in Room 123-S of the Capitol.

Members present: Senators Salisbury, Burke, Gooch, Hensley, Jordan, Petty, Ranson, Reynolds, and Steffes.

Committee staff present: Lynne Holt, Legislative Research Department

Jerry Donaldson, Legislative Research Department

Bob Nugent, Revisor of Statutes Betty Bomar, Committee Secretary

Conferees appearing before the committee:

Rich Bendis, President, KTEC Jim Hague, EHV, Manhattan

Mary Good, Under Secretary for Technology, NIST, Washington, DC William D. Hammers, Executive Director, Kansas Mathematics & Science Education Coalition.

Others attending: See attached list

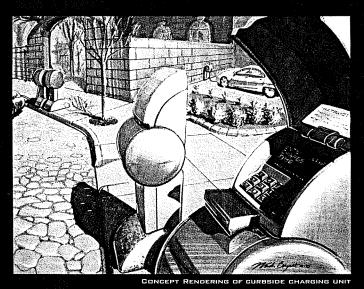
Rich Bendis, President, KTEC, stated the agenda this week before the Committee focuses on partnerships and KTEC's involvement with state agencies, universities and private industries.

Jim Hague, President, Electric Hybrid Vehicles (EHV), a KTEC participant, stated Kansas and KSU has some of the best advisors in the country. Today, as in the future, we face choices that must be made. The environment is one of those concerns. As a consequence, we were convinced that electric vehicles are a part of the answer to our clean air. Mr. Hague informed the Committee about the Electric Hybrid Vehicle his company has produced and spin-offs such as the electric charge stations, Smart cards and other technology. This has been achieved as a result of a partnership with Western Resources with a grant of \$15 thousand and \$90 thousand from KTEC. To date there is a return of \$13 million in economic development in this state, and this amount will soon exceed \$20 million. The State of Kansas is a participant in the alternative fuel vehicle technology. (Attachment 1)

Mary Good, Ph.D., Under Secretary for Technology at the U.S. Department of Commerce's Technology Administration, briefed the Committee on the role of the federal government in the area of science and technology. Capital, labor and technology are the three ingredients that make economic growth go. It is necessary that emerging technology be adequately advanced in order that our country can maintain its place in the global economy. Dr. Good explained the need for technology partnerships between the federal government and the state government; the partnership between the federal government and industry; and the partnership between industry and academia. Dr. Good stated that MAMTC is a star in the manufacturing Extension Partnership program and is cited as a the model for the United States in utilizing state and federal monies for the economic growth of the State of Kansas. Dr. Good stated that 1994 is the first year there was a balance of trade deficit in technology products. (Attachment 2)

At its noon meeting at KTEC, William D. Hammers, Executive Director, Kansas Mathematics & Science Education Coalition, briefed Committee members on the Integration of Kansas strategic technologies with K-16 curriculum. (Attachment 3)

The next meeting is scheduled for January 23, 1996.


SENATE COMMERCE COMMITTEE GUEST LIST

DATE: January 22, 1996

NAME	REPRESENTING	
MIKE WOJCICKY	KTEC	
Cindy Diehl	11	
Janie Ribbertold	KTEC	
Diane Gjerstall	U.S.D. 359	
Kevin Carr	KTEC	
Churles Warren	Kansas, INC.	
Chava McKeel	intern for Senator Downey	
JAON PITENBERGER	K6C	
Chimothy Paros	Kansas, Inc.	
Fred Sudermann	Wichita Stole Unich.	
	/	

Flectric Vehicle

NFRASTRUCTURE

INFRASTRUCTURE PLAYS A VITAL ROLE IN THE EMERGING ELECTRIC VEHICLE WORLD. IS POISED TO PROVIDE INFRASTRUCTURE SOLUTIONS WITH THE INTRODUCTION OF VEHICLE CHARGING UNITS THAT WILL MAKE THE RECHARGING OF EVS SAFE AND ECONOMICAL.

The Wallmount Unit

THE ECONOMICAL WALL-MOUNTED CHARGER IS DESIGNED FOR THE EV OWNER AS A SIMPLE AND SAFE METHOD OF VEHICLE CHARGING AT AN ECONOMICAL PRICE. WITH THE STANDARD AVCON CONNECTOR AND BUILT IN SYSTEM INDICATORS, IT PROVIDES A SIMPLE METHOD OF CHARGING AN EV.

The Curbside Unit

THE CURBSIDE UNIT IS A FREE-STANDING ELECTRIC VEHICLE CHARGER. DESIGNED FOR OUTDOOR USE IN PUBLIC AREAS IT PROVIDES THE NECESSARY DURABILITY WITH AN EASY TO OPERATE USER INTERFACE. AVAILABLE WITH AN OPTIONAL METER IT CAN DISPENSE ELECTRICITY USING SMART CARD TECHNOLOGY.

RANSPORTATION

Unit Housing

Wallmount

Curbside Cast aluminum body w oncrete base. Standard paint, s, al

colors with quantity order.

Steel electrical box painted gray with special colors available

quantity order.

System Indicators

LED indicators for the following functions: meter on, vehicle charge, vehicle failure, meter failure.

Service and Receptacle Voltages (magnitudes)

120/240 14 or 120/208 24 of 34 Standard Option 240 1₫ Frequency 50/60 Hz Shape sinusoidal Distortion none added

Output Receptacles

Standard	AVCON connector
Option 1	NEMA 6-20 & 14-50
Option 2	NEMA 6-20 & 5-20
Option 3	NEMA 5-20 & 14-50
Option 4	CEE7 (Europe)
Option 5	DS1363
Option 6	Others Available

Maximum Output Current (amperes)

	Curbside	Wallmount
AVCON	20&50	20&30
NEMA 5-20	20	20
NEMA 14-50	50	40
NEMA 6-20	20	20
CEE7	16	16
DS1363	13	13
Special	5 to 60	5 to 40

Pricing

Wallmount Unit: \$599. Curbside Unit: Call

Ordering Information

Please contact the TDM Electric Vehicle Marketing Center at the following numbers:

phone: 313-537-3880 fax: 313-537-8765

online: http://www.tdm-team.com

Information contained in this Specifications sheet was correct when approved for public release. TDM reserves the right to change or to discontinue specifications or designs at any time without notice or obligation. All taxes and delivery charges extra. c 1995 TDM. 12/02/95

\/ahicle

l Year

1996

Body Style Wheelbase Regular cab pickup

Payload

Long wheelbase

Dimensions

550 lbs. (includes 2 pass.) Similar to 1996 Ranger

Exterior paint

Oxford white other colors special order

Powertrain

Motor

100hp (peak) high-efficiency,

3-phase AC

Transaxle

Single-speed, RWD

Standard Features

Dual Air Bags

Occupant Protection

Microprocessor control units:

Battery Controller

Monitors functions of the

batterv

Motor Inverter

Converts high voltage DC to

3-phase AC

Communications

Operates instruments and

center

climate control Electric resistance

Heater

Regenerative braking Energy recovered to increase

range

DC/DC convertor

2-wheel ABS

Electronic "alternator"

Straighter stopping and steering control under most

conditions

Battery thermal management

Maintains battery

temperatures

FMVSS

Full vehicle safety compliance

Battery

Type Voltage Sealed lead-acid

26x12v modules

Battery capacity

312v system 26kWh (21kWh @ 80%

discharge)

Charger

On-board 240v/30A

ELECTRIC VEHICLE

Data Sheet

Performance argets

0-50 mph

<13 seconds

Rated top speed

70 mph (governed)

Customer range @

32F w/heater

30 miles

Range--FUDS cycle

55 miles without A/C or

@ 72F

heater usage

Pricing

Base Vehicle MSRP

\$29,499.

Option package: Air Conditioning &

\$2,999.

Electrohydraulic Power Steering

Incentives and Orderina

See separate TDM sheet for pricing, incentive discounts and ordering information.

Warranty

Vehicle

3/36, same as 1996 gasoline powered, inclusive of integral

parts

Batteries

1 year, pro-rated

TDM Electric Vehicle Marketing Center

Telephone

313-537-3880

Fax

313-537-8765

Online

http://www.tdm-team.com

Production Availability

Production vehicles available to customers in 1996 through selected TDM dealers

Information contained in this Specifications sheet was correct when approved for public release. TDM reserves the right to change or to discontinue specifications or designs at any time without notice or obligation. All taxes, title, and destination charges extra. Final FMVSS and QVM certification forthcoming. c 1995 TDM. 8/24/95

Presentation to Kansas
State Legislators
January 22, 1996

Dr. Mary L. Good
Under Secretary for Technology
U.S. Department of Commerce

Enabling the Nation's Capacity to Perform in a Global Community

Industry \$84B R&D

Globally Competitive U.S. Industrial Base

Competitive Products & Processes, Creating Jobs & Wealth

· :. :

Technology Utilization and Conversion

Joint Industry Government University

INSURE THE CONNECTION BETWEEN
INFRASTRUCTURE AND COMPETITIVE ACTIVITIES

Targeted Support for SMFs

SBIR

MER

TRP

Cost-

Shared

Tech Dev.

ATP

NASA Aeronauucs National Lab Transfers

CRADAS

Tech. Transfer/ Licensing Strategic Partners Ships

SEMATECH
PNGV
AMTEX
Environmental

Tech.

Virtual Partner-Ships

NEMI
Construction
& Building
NH
Manufacturing
Ouglity

Partnerships for Pre-Competitive and New Technology Development

- Enabling Technologies
- •Emerging Technologies
- Technology Development
- Productivity Improvement

Intellectual and General Infrastructure

Government \$70B R&D

FUNDAMENTAL RESEARCH

- •Discovery Science
- •Mission Driven Basic Research MISSION APPLIED R&D

BUSINESS ENVIRONMENT

- •Investment Incentives
- •Regulation\Legislation
- •Trade & Export Climate
- •International Assessments

PUBLIC RESPONSIBILITIES

- •Education/Training
- •Standards/Measures
- •Capture of the Social Value of the Nation's Tech. Base

SBIR - Small Business Innovation Research
MEP - Manufacturing Extension Partnership
ATP - Advanced Technology Program
TRP - Technology Reinvestment Project
CRADAS - Cooperative R&D Agreements
FedState - State/Federal Tech. Partnership
NII - National Information Infrastructure

- SBIR Small Business Innovation Research
 - Targetted toward Small Business
 - Nation Wide, Every State
 - Every Federal R&D Performing Agency
 - Funded as % of mission Agency Budget
 - Largely mission specific

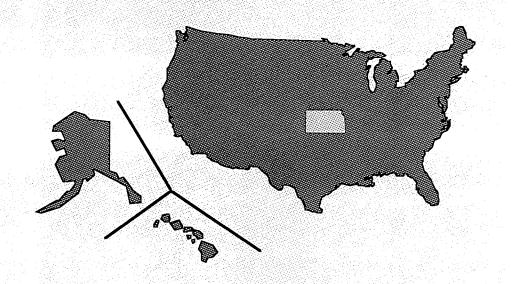
- MEP Manufacturing Extension Partnership
 - Targetted toward Small/Med. Manufacturers
 - Active Manuf. Sector in Most States
 - Department of Commerce NIST
 - Cooperative with State Local Efforts
 - Some Centers Intiated with DOD/TRP
 - Funding remains, but no expansion.

7-7

- ATP Advanced Technology Program
 - Targets Industry Wide, Large & Small Business
 - Competitive, no geographic targetting
 - Participants from majority of States
 - Cost-shared, Peer Reviewed
 - Funding in controversey

- TRP Technology Reinvestment Project
 - Targetted by Community and Region
 - Defense Conversion
 - Envisioned Technology Infrastructure Efforts
 - -Not Realized
 - Funding from Department of Defense
 - Not Continued

CRADAS - Cooperative R&D Agreements

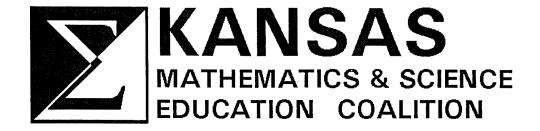

- Targets Appropriate Research Partners
- Include State Universities, Industry
- Funded by R&D Agencies DOD, DOE, NASA
- Numbers Increasing, Metrics Difficult
- Some Technology Diffusion, Transfer

FedState - State/Federal Tech. Partnership

- Targets State Efforts
- Independent Efforts Coalescing
- Leadership from States, DOC, White House OSTP
- No Funding Mechnism

Technology: State-Federal Partnership

- Technology is Ubiquitous
 - Every State
 - Every Industry
- Economic Development
 - Key component
 - Variety of Approaches
- State-Federal Partnership is in the Formative Stage
- States Differ Greatly



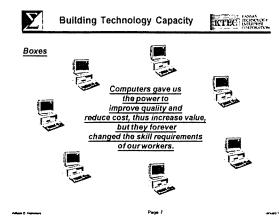
7-11

Federal Technology Policy and the States

NII - National Information Infrastructure

- National Initiative Infrastructural by nature
- Targets all States, Regions
- NII Task Force, Lead by Secretary of Commerce
- Strong interest by Vice President, Speaker
- NII Applications Grants, Department of Commerce NTIA

Presentation

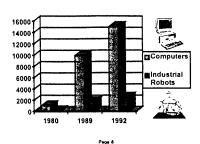

to

Senate Commerce Committee and

House Economic Development Committee

by William D. Hammers Executive Director, KMSEC January 22, 1996

January 22, 1996
Topeka, Kansas Denate Commerce
Committee
Canvary 22, 1996
Attackment 3 thu 3 -



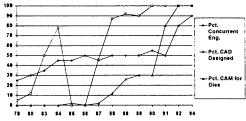
Y

Building Technology Capacity

KTEC MINTER

Increase in Use of Computers and Robots Within Chrysler Corporation

-


Building Technology Capacity

Building Technology Capacity

Increase in Teamwork and Computer Alded Work at Chrysler Corporation

increases in workers' education levels produce twice the gains in workplace efficiency as investments in tools and machinery. A 10 percent increase in educational attainment produces an 8.6 percent increase in productivity, approximately the same percentage that is gained in employees' income for each additional year of schooling."

"A recent study conducted by the Census Bureau for the Federal Department of Education found that education is the best investment business can make;

> Valuesere M. Kunn. Deputy Secretary: US Department of Education. Education Reform, Staking Out Commo Ground DAEDALUS Journal of the American Act ademy of Arts and Sciences. Fig. 1995.

10

Ві

Building Technology Capacity

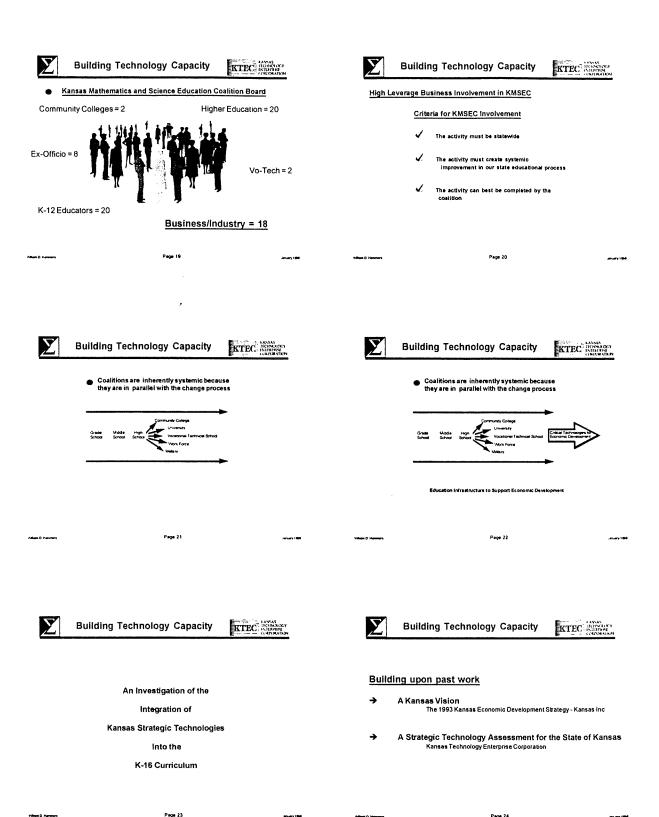
Business Training Courses:

isiness manning courses.		
	Total Hours	
Skill Development Through Trigonon	netry	80
Descriptive Geometry	20	
Shop Math I	30	
Shop Math II	30	
Communication and Teamwork		16
Getting Good Information From Others	4	
Getting Your Ideas Across	4	
Clarifying Team Roles and Responsibilities	4	
Resolving Team Confects	4	
Creative Problem Solving		20
Fostering Improvement Through Innovation	4	
Solving Problems: The Basic Process	4	
Solving Problems: Tools and Techniques	4	
Participating in Problem Solving Sessions	4	
Leading Problem Solving Sessions	4	
Basic Statistics		20
No Sweet Statetics	8	
Statutical Process Control	12	
Total Hours		136
Salary and Fringe Benefits		\$17
Total investment Per Employee		\$2312

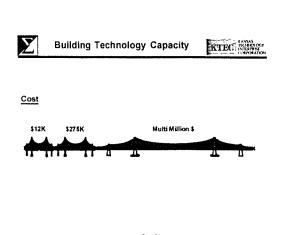
V

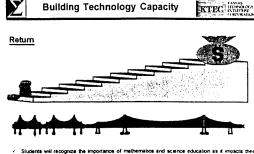
Building Technology Capacity

Math and Science Education Reform


Responding to the Alarm - 1989 - 1990

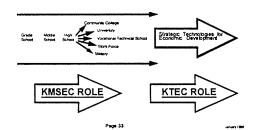
National Council of Teachers of Mathematics


Curriculum and Evaluation Standards for Mathematics


Project 2061
Science for All Americans

30°-00" | 1884

3-3



- Students was recognize the importance of mathematics and science education as it impacts their future career opportunities, and the global connectiveness of the Kansas and national economie
- Students will demonstrate the appeal mathematics and science skills important to the growth of the Kansas economy as defined in the Kansas Strategic Technologies Assessment

Building Technology Capacity

Development of Kansas Strategic Technologies and the Educational Infrastructure to Support Them

Building Technology Capacity

Systemic Reform

of

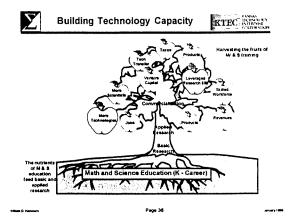
Math and Science Education

Is NOT

Just a Money Issuel

Page 34 aver

It is a Larger issue -


The Business Sector and the Public Policy Sector

Must Make A

Commitment to Sustain

The Systemic Reform of Math and Science Education Initiated by the Education Sector In Response To The Economic Development Needs Of The States

dis

3-4