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A B S T R A C T   

Background: Made as a tea, the Thai traditional drug “kratom” reportedly possesses pharmacological actions that 
include both a coca-like stimulant effect and opium-like depressant effect. Kratom has been used as a substitute 
for opium in physically-dependent subjects. The objective of this study was to evaluate the antinociception, 
somatic and physical dependence produced by kratom tea, and then assess if the tea ameliorated withdrawal in 
opioid physically-dependent subjects. 
Methods: Lyophilized kratom tea (LKT) was evaluated in C57BL/6J and opioid receptor knockout mice after oral 
administration. Antinociceptive activity was measured in the 55 ◦C warm-water tail-withdrawal assay. Potential 
locomotor impairment, respiratory depression and locomotor hyperlocomotion, and place preference induced by 
oral LKT were assessed in the rotarod, Comprehensive Lab Animal Monitoring System, and conditioned place 
preference assays, respectively. Naloxone-precipitated withdrawal was used to determine potential physical 
dependence in mice repeatedly treated with saline or escalating doses of morphine or LKT, and LKT amelioration 
of morphine withdrawal. Data were analyzed using one- and two-way ANOVA. 
Results: Oral administration of LKT resulted in dose-dependent antinociception (≥1 g/kg, p.o.) absent in mice 
lacking the mu-opioid receptor (MOR) and reduced in mice lacking the kappa-opioid receptor. These doses of 
LKT did not alter coordinated locomotion or induce conditioned place preference, and only briefly reduced 
respiration. Repeated administration of LKT did not produce physical dependence, but significantly decreased 
naloxone-precipitated withdrawal in morphine dependent mice. 
Conclusions: The present study confirms the MOR agonist activity and therapeutic effect of LKT for the treatment 
of pain and opioid physical dependence.   

1. Introduction 

Agonists of the mu-opioid receptor (MOR) such as morphine are 
effective analgesics, but demonstrate adverse effects such as con
stipation, respiratory depression, physical dependence, and addiction 
(Li and Zhang, 2012). In 2018, these effects claimed an average of 130 
lives daily in the United States from opioid overdose (CDC/NCHS, 

2018). 
Withdrawal symptoms in subjects physically-dependent on 

morphine are severe and include increased blood pressure and heart 
rate, pronounced diarrhea and vomiting, and dysphoria (Ballantyne and 
LaForge, 2007). The severity of these effects contibutes to the high rate 
of relapse in subjects abusing opioids (Kreek and Koob, 1998). Current 
pharmacological treatments for opioid withdrawal include substitution 

Abbreviations: ANOVA, Analysis of Variance; β-FNA, β-funaltrexamine; CLAMS, Comprehensive Lab Animal Monitoring system; CPA, conditioned place aversion; 
CPP, conditioned place preference; DOR, Delta-opioid receptor; KOR, Kappa-opioid receptor; KO, Knockout; LKT, Lyophilized Kratom Tea; MOR, Mu-opioid receptor; 
nor-BNI, nor-binaltorphimine; p.o., per os; RM, Repeated Measures. 
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with the MOR agonist methadone or the multifunctional 
opioid/nociception-OFQ agonist, buprenorphine (Kreek et al., 2002). 
These therapeutics produce liabilities of abuse and physical dependence 
that complicates treatment for opioid dependence, highlighting an ur
gent need for improved therapeutics for pain and opioid withdrawal. 

Case studies and surveys suggest a tea traditionally prepared from 
the fresh leaves of Mitragyna speciosa (Korth.) Havil., kratom, may 
transition physically-dependent individuals off opioids with fewer 
symptoms of withdrawal (Boyer et al., 2008; Swogger et al., 2015). 
Kratom tea is documented to decrease fatigue and treat other ailments 
such as pain, cough, and inflammation (Swogger et al., 2015; Warner 
et al., 2016). It is speculated that kratom effects are mediated by two of 
its constituents, mitragynine and 7-hydroxymitragynine (approximately 
66% and 1-2% of the plant’s alkaloid content, respectively) (Kamble 
et al., 2019; Kruegel et al., 2019), both of which have shown affinity for, 
and agonistic effects at, the MOR (Takayama et al., 2002; Boyer et al., 
2008; Hassan et al., 2013; Váradi et al., 2016). 

Most kratom users partake of the natural product orally as a tea 
extract (Avery et al., 2018; Boyer et al., 2008). Despite this anecdotal use 
of kratom to treat pain and opioid withdrawal (Garcia-Romeu et al., 
2020), few behavioral pharmacology studies have assessed the analgesic 
efficacy, liabilities, or the potential of kratom tea to treat opioid with
drawal under controlled conditions. The present study utilized mice to 
evaluate antinociception and liabilities of relevant doses of orally 
ingested lyophilized kratom tea (LKT), where the constituents were 
previously characterized (Sharma et al., 2019) and constant herein. 
Additionally, the therapeutic potential of LKT to prevent 
naloxone-precipitated withdrawal in mice physically-dependent on 
morphine was assessed. 

2. Materials and Methods 

Male C57BL/6J and gene-disrupted (knock-out, or KO) mice for the 
mu- (MOR), kappa- (KOR) or delta-opioid receptor (DOR) (20–35 g) 
were used (Jackson Laboratories, Bar Harbor, Maine, USA). Mice were 
housed five per cage on a 12:12 h light/dark cycle (lights off at 7 pm). 
Access to water and food was ad libitum. Animal studies are reported in 
compliance with the ARRIVE guidelines (Kilkenny et al., 2014). Sample 
sizes were approximated by Power analysis, with animals assigned to 
groups randomly and double blinded treatment groups. Animal studies 
were approved and conducted in agreement with the Institutional Ani
mal Care and Use Committees at the Universities of Mississippi, Florida 
and in accordance to the National Institutes of Health guide for the care 
and use of Laboratory animals (NIH Publications No. 8023, revised 
1978). 

2.1. Chemicals 

Dried leaves of Mitragyna speciosa (kratom) were purchased from 
Pure Land Ethnobotanicals in February of 2009 and authenticated by Dr. 
Rita Moraes from the National Center for Natural Products Research at 
the University of Mississippi. All other chemicals were obtained 
commercially from Sigma-Aldrich. 

2.2. Preparation of Lyophilized Kratom Tea (LKT) 

The plant material was prepared as previously described (Avery 
et al., 2018; Kamble et al., 2019). As reported previously, 200 g of the 
processed leaf material was added to a finum tea filter, and boiled in 2 L 
of water for 20 min. The filtered aqueous layer was evaporated to yield 
LKT. All LKT used were from the same preparation, analyzed for the 
content of 8 kratom alkaloids using an ultra-performance liquid chro
matography tandem mass spectrometer (UPLC-MS/MS) method (see 
Table 1, reproduced from Sharma et al., 2019). 

2.3. Dosing of LKT 

The test dose of LKT used in the present mouse study was calculated 
using the FDA-recommended guidelines (listed as equation 1, below) 
from the normalized dose of mitragynine (56.7 mg) available in a glass 
of kratom juice consumed by the native kratom users from Malaysia 
(FDA, 2005; Singh et al., 2020). The correction factors (Km) were 
derived from average body weight (kg) of species to its body surface 
area, with FDA recommended values of Km as 37 and 3 used for human 
(60 kg) and mice (0.02 kg), respectively. 

Equivalent mice dose
(

mg
kg

)

= Human equivalent dose
(

mg
kg

)

∗

[
Km for human

Km for mice

]

(1) 

The calculated human equivalent dose of mitragynine in mice (MED) 
was 11.7 mg/kg. According to the quantitative analysis of LKT for 
mitragynine content (7.4 mg/g), 1.6 g/kg of LKT would be required to 
achieve the MED. The MED of LKT (rounded to 2 g/kg) as well as a dose 
equivalent to half of MED (1 g/kg) was thus used for the LKT charac
terization in most animal experiments. 

2.4. Antinociceptive Characterization (55 ◦C Warm-Water Tail- 
Withdrawal Assay) 

Mice were divided into 5 groups (n = 8, or 16 for KOR KO mice). The 
55 ◦C warm-water tail-withdrawal assay was performed as previously 
described (Reilley et al., 2010). Latency to remove the tail from the 
water was the recorded end point. After measuring baseline responses, 
mice were administered either morphine (1-60 mg/kg, i.p. or p.o.), 
vehicle (saline (0.9%)) or LKT (45-4000 mg/kg, p.o.) and the tail 
withdrawal measured every 10 minutes until a return to baseline was 
recorded. Antinociception was calculated using the following formula: 

% antinociception = 100 x ((test latency-baseline latency)/ (15- 
baseline latency)) 

Mice that failed to withdraw their tails within 15 seconds were 
assigned a maximum antinociceptive response (100%) to avoid tissue 
damage. 

2.5. Respiratory Depression/Locomotor Activity Assessment 

Locomotor activity and respiratory depression were assessed using 
the automated, closed-air Comprehensive Lab Animal Monitoring sys
tem (CLAMS) as previously described (Brice-Tutt et al., 2020; Cirino 
et al., 2019). Randomly grouped mice were habituated in individual 
chambers for 60 min, then administered morphine (30 mg/kg, p.o.), LKT 
(1 g/kg, p.o.) or vehicle. Animals moved freely inside the chambers for 3 
hours, where respiration (breaths/minute) and ambulation (number of 
photobeam breaks) were counted. 

2.6. Rotarod Assessment of Impaired Motor Activity/Sedation 

Sedative or locomotor impairing effects of LKT were assessed as 

Table 1 
Alkaloid content of LKT.   

mg/g 

Alkaloid  
Mitragynine 7.4 
Speciociliatine 3.5 
Paynantheine 2.5 
Corynoxine B 0.3 
Corynantheidine 0.2 
Isocorynantheidine 0.2 
7-hydroxymitragynine 0.1 
Speciogynine 0.1  
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described previously using the computer-controlled rotarod apparatus 
(San Diego Instruments, San Diego, CA) (Brice-Tutt et al., 2020; Cirino 
et al., 2019). Mice were first habituated to the rotarod over seven trials, 
with the last trial serving as the baseline response. Habituated mice were 
administered saline (p.o.), U50,488 (10 mg/kg, i.p.), morphine (10 
mg/kg, i.p.) or LKT (45 mg/kg or 1 g/kg, p.o.) 15 min prior to assess
ment in accelerated speed trials (180 s max. latency at 0-20 rpm) per
formed every 10 min from 0 min over a 60 min period for a total of 14 
trials (seven habituation trials + seven drug trials). Decreased latencies 
to fall indicate impaired motor performance and possible sedation 
(Cirino et al., 2019). 

2.7. Conditioned Place Preference (CPP) 

An automated, balanced three-compartment place conditioning 
apparatus (San Diego Instruments, San Diego, CA) and 2-day counter
balanced conditioning design was used (Cirino et al., 2019; Eans et al., 
2015). The amount of time subjects spent in each of three compartments 
was measured over a 30 min testing period. Each of the next two days, 
mice were administered vehicle (0.9% saline) and confined in a 
randomly assigned outer compartment: half of each group in the right 
and left chambers. Four hours later, mice were administered morphine 
(10 mg/kg, i.p.) or LKT (100 mg/kg or 1 g/kg, p.o.) and confined to the 
opposite compartment for 40 min. 

2.8. Naloxone Precipitated Opioid Withdrawal Assay 

Mice (n = 8-10 group) were placed into six groups (Table 2): saline (i. 
p.), morphine (10-75 mg/kg, i.p.), escalating doses of LKT (30-125 mg/ 
kg, p.o.), 7-day morphine + LKT (acute), 4-day morphine + LKT (100 
mg/kg), 4-day morphine + LKT taper dosing (100-40 mg/kg). Morphine 
(i.p.) and LKT (p.o.) was dosed daily at 9:00 A.M. and 7:00 P.M., as 
previously reported (Kamei and Ohsawa, 1997). A final single treatment 
of morphine or kratom was given on the final day of testing (see 
Table 2). Two hours post-injection on the last day of testing, the all mice 
were administered naloxone (10 mg/kg, s.c.) to induce opioid with
drawal symptoms. 

Opioid withdrawal behaviors (see Supplemental Table 1) were 

quantified from mice placed in a 16 cm × 45 cm plexiglass cylinder for 
15 min after naloxone administration using established methods (Fer
nandes et al., 1977; Shaw-Lutchman et al., 2002). 

2.9. Statistical Analysis 

All data were analyzed using Prism 8.0 software (GraphPad Soft
ware, La Jolla, California, USA). Normality and equal variance were 
confirmed statistically and justified using parametric analysis. 
Nonlinear or linear regression modeling was performed to analyze ED50 
values (dose yielding 50% effect) along with 95% confidence intervals 
(C.I.) using each individual data point. CLAMS data is reported as the % 
of matching vehicle control responses. The rotarod data are expressed as 
the % change from baseline performance, using within subject controls. 
CPP data are reported as the difference in time spent in the drug- and 
vehicle paired compartments between pre-conditioning and post- 
conditioning responses. Weight was identified as the percent of weight 
change each day when compared to the baseline (or naïve weight) of 
each mouse. Significant differences in behavioral data were analyzed by 
ANOVA (one-way or two-way RM) as appropriate, with significant re
sults further analyzed with Tukey’s multiple comparisons post-hoc tests 
for significant pairwise comparisons within and between groups. Sig
nificance was p ≤ 0.05. 

3. Results 

3.1. Lyophilized kratom tea-mediated antinociception in the 55◦C warm- 
water tail-withdrawal assay 

Morphine dose-dependently produced full antinociception with an 
ED50 (and 95% C.I.) value of 3.91 (2.92-5.17) mg/kg, i.p., and 4.67 
(3.47-6.21) mg/kg, p.o. (Fig. 1A) that significantly differed from vehicle 
(F(8,144) = 4.99, p < 0.0001; two-way RM ANOVA) up to 70 min after 
oral (per os, p.o.) administration of approximately the ED50 dose (5 mg/ 
kg, p.o.; green triangles, Fig. 1B). LKT also demonstrated significant time 
and dose-dependent antinociception after oral administration (F(62,490) 
= 10.31, p < 0.0001), but the ED50 value for LKT was not determined, as 
a full response was not observed within the doses tested (Fig. 1A). The 

Table 2 
Method: Experimental Design of Treatment Administration for Naloxone Precipitated Withdrawal Assay.    

Treatment 

Treatment 
Day 

Saline Escalating Doses of 
Morphine 

Escalating Doses of LKT (30- 
125 mg/kg) 

7d Morphine + LKT- 
Acute 

4d Morphine + LKT Continuing 
(100 mg/kg) 

4d Morphine + LKT Tapering 
(100-40 mg/kg) 

Day 1 am 
pm 

- 
- 

10 mg/kg 
15 mg/kg 

30 mg/kg 
35 mg/kg 

10 mg/kg 
15 mg/kg 

10 mg/kg 
15 mg/kg 

10 mg/kg 
15 mg/kg  

Day 2 am 
pm 

- 
- 

20 mg/kg 
30 mg/kg 

45 mg/kg 
60 mg/kg 

20 mg/kg 
30 mg/kg 

20 mg/kg 
30 mg/kg 

20 mg/kg 
30 mg/kg  

Day 3 am 
pm 

- 
- 

50 mg/kg 
60 mg/kg 

100 mg/kg 
100 mg/kg 

50 mg/kg 
60 mg/kg 

50 mg/kg 
60 mg/kg 

50 mg/kg 
60 mg/kg  

Day 4 am 
pm 

- 
- 

70 mg/kg 
75 mg/kg 

125 mg/kg 
125 mg/kg 

70 mg/kg 
75 mg/kg 

70 mg/kg 
75 mg/kg 

70 mg/kg 
75 mg/kg  

Day 5 am 
pm 

- 
- 

25 mg/kg 
Morphine 
- 

25 mg/kg Kratom 
- 

80 mg/kg 
80 mg/kg 

100 mg/kg Kratom 
100 mg/kg Kratom 

100 mg/kg Kratom 
100 mg/kg Kratom  

Day 6 am 
pm 

- 
- 

- 
- 

- 
- 

80 mg/kg 
80 mg/kg 

100 mg/kg Kratom 
100 mg/kg Kratom 

80 mg/kg Kratom 
70 mg/kg Kratom  

Day 7 am 
pm 

- 
- 

- 
- 

- 
- 

80 mg/kg 
80 mg/kg 

100 mg/kg Kratom 
100 mg/kg Kratom 

60 mg/kg Kratom 
50 mg/kg Kratom  

Day 8 am - - - 40 mg/kg Kratom 40 mg/kg Kratom 40 mg/kg Kratom  
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peak response of antinociception from high doses of LKT (1 - 4 g/kg p.o.) 
from 30 to 50 min post-administration was equivalent to that produced 
by morphine (5 mg/kg, p.o.; Two-Way RM ANOVA w/Tukey’s test, 
Fig. 1B), and the duration of significant LKT-mediated antinociception 
when given at 4 mg/kg, p.o. lasted as long as morphine (70 min; 
Fig. 1B). 

Potential opioid receptor mediation of antinociception observed 
after oral dosing of LKT (1 g/kg, p.o.) was tested using mu- (MOR), 
kappa- (KOR), or delta-opioid receptor (DOR) knockout mice (KO) 
(Fig. 2). Compared to the response of wild-type mice, the anti
nociceptive activity was significantly decreased (factor: treatment; F(4, 

86) = 16.7, p < 0.0001; Two-way ANOVA) in the MOR KO animals (p <
0.0001, Tukey’s test) and to a lesser extent KOR KO mice (p = 0.006, 
Tukey’s test), but remained unaffected in DOR KO mice (p = 0.15, 
Tukey’s test). Antinociception of LKT was abolished in MOR KO mice 
pretreated with the KOR-selective antagonist, nor-BNI (Fig. 2, rightmost 
bar), with a response significantly different from that of the WT mice (p 
< 0.0001, Tukey’s test), but not from the baseline (untreated) response 
(1.29 ± 0.04 s vs 1.45 ± 0.07 s; p > 0.99; Tukey’s test). Together, these 

results indicate that this dose of LKT-induced antinociception in mice 
occurs primarily through activation of the mu-opioid receptor, but with 
additional kappa-opioid receptor agonism as well. 

3.2. Evaluation of potential liabilities of Lyophilized Kratom Tea 

The effects of LKT on spontaneous locomotor activity and respiration 
rate were assessed in C57BL/6J mice following administration of LKT (1 
g/kg, p.o.) using the Comprehensive Laboratory Animal Monitoring 
System (CLAMS; Fig. 3). Morphine (30 mg/kg, p.o.) or vehicle (saline, p. 
o.) were tested as positive and negative comparison controls, respec
tively. Morphine produced significant time-dependent increases in 
ambulation (factor: time x treatment, F(16, 248) = 9.26, p < 0.0001, Two- 
way RM ANOVA; Fig. 3A) from 20-160 min (p < 0.05, Tukey’s post-hoc 
test) and decreases in respiration rate (factor: time x treatment, F(16, 248) 
= 7.10, p < 0.0001, Two-way RM ANOVA; Fig. 3B) up to 80 min (p ≤
0.007, Tukey post-hoc test). In contrast, LKT significantly increased 
ambulation from 60-160 min (p = 0.002, Tukey’s test), but suppressed 
respiration only for the first 20 min (p ≤ 0.03, Tukey’s test). Both 
behavioral effects of LKT were significantly less than those of morphine 
at matching time points (p ≤ 0.03, Tukey’s test). Assessing opioid con
tributions, LKT (1 g/kg, p.o.) was further examined in MOR KO mice 
alone (green triangles, Fig. 3) or MOR KO mice pretreated 24 h with the 
KOR antagonist nor-BNI (10 mg/kg, i.p.; purple squares, Fig. 3). 
Compared to wild-type mice, LKT produced significant global reductions 
in ambulation (factor: time x treatment, F(16, 248) = 6.81, p < 0.0001, 
Two-way RM ANOVA; Fig. 3A), suggesting opioid mediation of the 
limited LKT locomotor effects. Likewise, significant global differences 
were observed in respiration among these three groups (factor: time x 
treatment, F(16, 248) = 3.07, p < 0.0001, Two-way RM ANOVA; Fig. 3B). 
Post-hoc analysis demonstrated no significant difference across time in 
respiration rate between LKT-treated wild-type and MOR KO mice (p ≥
0.22, Tukey’s test), although MOR KO mice pretreated with nor-BNI 
displayed decreased respiration from wild-type at some intervals 
(†≤0.03; Tukey’s test, Fig. 3B). However, the respiration rate of nor-BNI 
pretreated MOR KO mice administered LKT did not significantly differ 

Fig. 1. Characterization of (A) dose– and (B) time-dependent antinociception 
of oral Lyophilized Kratom Tea (LKT) in the mouse 55 ◦C warm-water tail- 
withdrawal test. Latency to tail withdrawal was evaluated 30 min after 
administration of morphine (i.p. or p.o.) or LKT (p.o.) for evaluation of dose- 
response (A), or every 10 minutes post administration for evaluation of time 
course (B). Points represent the mean ± SEM of n = 8 mice. *p < 0.05 versus 
the pretreatment tail withdrawal response, Two-Way RM ANOVA, with Tukey’s 
multiple comparisons post-hoc test. 

Fig. 2. Opioid receptor selectivity of Lyophilized Kratom Tea (LKT) anti
nociception. LKT was administered orally (1 mg/kg, p.o.) to wild-type or in
dividual opioid receptor knock out (KO) mice, or MOR KO mice pretreated 24 h 
with nor-BNI (10 mg/kg, i.p.). Antinociception was evaluated using the 55 ◦C 
warm-water tail-withdrawal latency 30 min post administration of LKT. Each 
bar represents the mean ± SEM of n = 8 mice, with n = 16 KOR KO mice. *p <
0.05 versus the group’s baseline tail withdrawal latency; † p < 0.05 versus 
antinociceptive response of the wild-type group, Two-Way ANOVA with 
Tukey’s multiple comparisons post-hoc test. 

L.L. Wilson et al.                                                                                                                                                                                                                                
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from that of saline-treated control mice at any time point (factor: time x 
treatment, F(8, 176) = 0.20, p = 0.99, Two-way RM ANOVA). 

The effect of LKT on evoked locomotor activity was further examined 
in the mouse rotarod assay. The KOR agonist U50,488 (10 mg/kg, i.p.) 
was used as a positive control, producing a significant decrease in la
tency to fall (factor: treatment, F(4,37) = 4.01, p = 0.009 and factor: time, 
F(4.84,179) = 11.8, p < 0.0001; each Two-way RM ANOVA w/Tukey’s 
test; Fig. 4). Morphine (10 mg/kg, i.p.) produced a trend towards 
increased latency to fall, although this did not significantly differ from 
the response of vehicle-treated control mice at any time point. Likewise, 
LKT (45 mg/kg or 1 g/kg, p.o.) did not significantly alter locomotor 
responses compared to saline controls (p = 0.63 and p = 0.35, 
respectively). 

Morphine (10 mg/kg, i.p.) produced significant conditioned place 
preference (CPP) (F(1,126) = 7.73, p = 0.006; Two-way ANOVA w/ 
Tukey’s post-hoc test; Fig. 5). In contrast, LKT (0.1 or 1 g/kg, p.o.) 
demonstrated no significant difference from pre-conditioning responses 
after place conditioning (p = 0.60 and 0.73, respectively; Tukey’s test; 
Fig. 5). Collectively, these results indicate that while LKT possesses MOR 
agonist activity, it lacks some liabilities associated with clinically-used 
MOR agonists such as morphine. 

3.3. Evaluation of LKT physical dependence and amelioration of opioid 
withdrawal 

Repeated treatment with escalating doses of morphine induced 
physical dependence, demonstrated by administration of naloxone 
(Table 3). Morphine produced significant increases in the frequency of 
jumping (F(5,62) = 20.2, p < 0.0001; Fig. 6A) and teeth chattering (F(5,62) 
= 9.48, p < 0.0001; both One-way ANOVA w/Tukey’s test; Fig. 6B) 
compared to the saline control group. A significant reduction in rearing 
and forepaw licking frequency (F(5,62) = 9.53, p < 0.0001 and F(5,62) =

6.18, p < 0.0001, respectively) was demonstrated, confirming that this 
morphine treatment produced physical dependence and naloxone- 
precipitated withdrawal symptoms. In contrast, daily escalating dosing 
of LKT (30-125 mg/kg, po) followed by naloxone produced few 

Fig. 3. Time-dependent effects of oral Lyophilized Kratom (LKT, 1 mg/kg) on 
(A) spontaneous locomotion (as ambulations) and (B) respiration rate were 
assessed in the Comprehensive Laboratory Animal Monitoring System (CLAMS) 
with wild type C57BL/6J mice and MOR KO mice. Morphine (30 mg/kg, p.o.) 
and saline (p.o.) are included as controls. * p < 0.05 versus saline control; † p <
0.05 versus the LKT wild-type group, Two-Way RM ANOVA with Tukey’s 
multiple comparisons post-hoc test). n = 12-16/group. 

Fig. 4. Time- and dose-dependent effects of Lyophilized Kratom Tea (LKT) after 
a 45 mg/kg or 1 g/kg, p.o. administration in the mouse rotorod assay. Vehicle 
(saline, p.o.), morphine (10 mg/kg, i.p.) and U50,488 (10 mg/kg, i.p.) were 
tested as controls. * p < 0.05 versus vehicle control, Two-Way RM ANOVA with 
Tukey’s multiple comparisons post-hoc test. n = 8-10 mice/treatment. 

Fig. 5. Characterization of oral Lyophilized Kratom Tea (0.1 and 1 g/kg, p.o.) 
in the conditioned place preference assay. LKT did not display place preference 
or aversion following place conditioning (Post-CPP), whereas morphine place 
conditioning resulted in significant place preference as compared to initial (Pre- 
CPP) baseline responses. Each bar represents the mean ± SEM. * p < 0.05 
versus Pre-CPP response; Two-Way RM ANOVA with Tukey’s multiple com
parisons post-hoc test. n = 17 (morphine) or 21 mice (LKT testing). 

L.L. Wilson et al.                                                                                                                                                                                                                                
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significant withdrawal signs (reduced rearing behavior (p = 0.005)), 
confirming reduced LKT physical dependence. 

The ability of LKT to attenuate naloxone-precipitated withdrawal in 
subjects physically-dependent on morphine was evaluated over three 
LKT treatment paradigms (as detailed in Table 2). While a single acute 
dose of LKT (40 mg/kg, po) significantly reduced jumping frequency (p 
< 0.0001; Table 3), acute dosing was unable to attenuate increased 
diarrhea (F(5,62) = 3.95, p = 0.011), teeth chattering (p = 0.015), and 
decreased rearing (p = 0.0004) compared to the saline control group. 
Prolonged treatment over 4 days with LKT (100 mg/kg, p.o., twice daily) 
significantly ameliorated all subsequent symptoms of naloxone- 
precipitated opioid withdrawal (jumping frequency (p < 0.0001; 
Fig. 6A); teeth chattering (p = 0.002; Fig. 6B); rearing frequency (p =
0.0003); Table 3). Finally, tapering the doses of LKT given over 4 days 
(from 100 to 40 mg/kg, p.o., twice daily) still significantly reduced 
naloxone-precipitated measures of opioid withdrawal, just as effectively 
as the repeated high doses (jumping frequency (p < 0.0001; Fig. 6A) and 
teeth chattering (p = 0.0006; Fig. 6B; Table 3). Notably, higher doses of 
LKT and methadone were evaluated for innate physical dependence and 
efficacy against morphine dependent withdrawal symptoms with com
parable effects (see supplemental data). 

4. Discussion 

Mitragyna speciosa (Korth.) Havil., called kratom, is anecdotally 
consumed both to treat pain and prevent opioid withdrawal (Hassan 
et al., 2020; Saref et al., 2019). Indications of rapidly increasing use 
prompted a warning from the U.S. FDA about the absence of scientific 
evidence supporting the application of kratom, and the potential for 
abuse liabilities (Anwar et al., 2016; O’Malley, 2018). While the upsurge 
of reports of kratom use has increased interest in the plant’s active in
gredients, there are few preclinical studies that evaluate the effects of 
consumption of whole, characterized plant material on pain and opioid 
withdrawal symptoms in a controlled manner. 

The present study demonstrates characterized LKT (whole plant 
material) produced dose-dependent antinociception with reduced 

liabilities while ameliorating opioid withdrawal in physically- 
dependent subjects. Although clinical trials examining the potentially 
analgesic properties of kratom in a cold pressor task (Clinical Trials.gov, 
NCT03414099, 2018) and the pharmacokinetics of a well-characterized 
kratom product on opioid-metabolizing CYP2D6 and CYP3A4 activity 
(Clinical Trials.gov, NCT04392011, 2020) are underway, results are not 
yet available, and there exists a knowledge gap for controlled human 
studies with kratom. However, the current findings are generally 
consistent with a number of case studies and surveys of self-reported 
uses for kratom. For example, these results are consistent with Boyer 
et al. (2008), a published case study of individuals self-treating opioid 
addiction and withdrawal with tea brewed from the leaves of kratom. 
That uncontrolled study revealed that individuals self-medicating with 
kratom tea consumed approximately 1-4 grams per day. Doses of kratom 
tea studied presently were guided by the findings of Boyer et al. (2008) 
and reported pharmacokinetic studies (Avery et al., 2018). Consistent 
with present content (Sharma et al., 2019), kratom is reported to 
represent a botanical mixture of at least 40 alkaloids (Adkins et al., 
2011). Mitragynine and 7-hydroxymitragynine are reported to represent 
approximately 60% and 2% of the alkaloids extracted from kratom 
(Warner et al., 2016). 

Consistent with another user survey, LKT produced antinociception 
with fewer liabilities than morphine (Garcia-Romeu et al., 2020). 
Existing literature reports attribute most effects of kratom tea and its 
main alkaloids to the activation of the mu-opioid receptor (Takayama 
et al., 2002; Hassan et al., 2013). Presently, LKT demonstrated dose- and 
time-dependent antinociception characteristic of partial agonism, but 
the reduction of LKT antinociception in KOR KO mice and abolition of 
antinociception in MOR KO mice treated with the KOR antagonist 
nor-BNI further suggest a modest KOR agonism. This is perhaps not 
surprising, given reports that kratom alkaloids display affinity for the 
kappa opioid receptor (Obeng et al., 2020). Notably, these results 
contrast with findings indicating that kratom’s main alkaloid, mitragy
nine, displayed DOR-mediated antinociception (Prozialeck et al., 2012). 
Recent mitragynine-mediated thermal antinociception in rats was not 
blocked by naltrexone, and only occurred at higher doses that disrupted 

Table 3 
Behavioral endpoints of naloxone-precipitated withdrawal in morphine-dependent mice following administration of either escalating or tapering doses of LKT over 
four to seven days.     

Treatment 

Withdrawal 
Behavior 

Saline Morphine Escalating Doses LKT 
(30-125 mg/kg) 

7 d Morphine +
LKT-Acute 

4d Morphine + LKT- 
high (100 mg/kg) 

4d Morphine + LKT-Taper 
(100-40 mg/kg) 

Outcome (1-Way 
ANOVA) 

Forepaw Tremor 22.6 ±
6.45 

24.9 ±
10.6 

12.3 ± 3.67 30.4 ± 6.05 35.1 ± 11.05 19.3 ± 7.74 F(5,62) = 0.78, p =
0.57  

Wet Dog Shakes 0.867 ±
0.39 

2.9 ± 1.71 0.4 ± 0.27 2.4 ± 1.06 1.3 ± 0.41 1.3 ± 0.41 F(5,62) = 0.90, p =
0.487  

Body Straightening 5.7 ±
2.33 

3.7 ± 1.22 3.2 ± 0.81 4.3 ± 1.37 1.5 ± 0.63 4.6 ± 1.43 F(5,62) = 1.85, p =
0.116  

Presence of 
Diarrhea 

1.1 ±
0.41 

3.8 ± 1.02 0.7 ± 0.47 4.3 ± 0.84* 3.6 ± 0.76 3.2 ± 0.81 F(5,62) = 3.95, p =
0.0036  

Jumping Frequency 0 ± 0 89 ±
13.27* 

2.9 ± 1.63 15.6 ± 5.46† 0.6 ± 0.47† 0 ± 0 F(5,62) = 20.24, p 
< 0.0001  

Rearing Frequency 41.6 ±
6.85 

7 ± 1.94* 14.7 ± 3.41* 9.3 ± 2.48* 40.7 ± 7.28† 28.5 ± 6.59† F(5,62) = 9.53, p <
0.0001  

Forepaw Licking 
Frequency 

20.1 ±
4.26 

1.4 ±
0.90* 

7.2 ± 2.17 5.8 ± 1.88 9.3 ± 3.46 7.1 ± 1.53 F(5,62) = 6.18, p =
0.0001  

Teeth Chattering 
Frequency 

0.8 ±
0.61 

90.7 ±
50.5* 

1.3 ± 0.80 61.6 ± 17.4* 15 ± 7.24† 9.6 ± 2.93† F(5,62) = 9.48, p <
0.0001 

Average and Standard Error of the Mean for 5-8-day treatment with saline, morphine, or Lyophilized Kratom Tea (LKT). *p < 0.05 versus Saline control, †p < 0.05 
versus Morphine control (Tukey’s post-hoc test) n = 8-10/group. 
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learned behavior, suggesting non-opioid mediation (Hiranita et al., 
2019). The reduction of LKT-mediated antinociception by MOR KO mice 
confirms MOR mediation consistent with earlier reports with rodents 
finding mitragynine-induced antinociception to be antagonized by the 
opioid receptor antagonists naloxone or naltrindole (Shamima et al., 
2012). Admittedly, doses that are considered low (1-5 g) in human 
consumption studies (Grewal et al., 1932) are also reported to interact 
with alpha-adrenergic and serotonin receptors that mediate analgesia 
(Matsumoto et al., 1996). Regardless, this study confirms that even low 
to medium doses of kratom tea possess analgesic effects. It should be 
noted that some of the antinociceptive effects of kratom may be attrib
uted to mitragynine’s metabolism to 7-hydroxymitragynine by CYP3A4 
in the intestine and the liver (Kamble et al., 2019; Kruguel et al., 2019). 
Studies have indicated that analgesic effects of 7-hydroxymitragynine 
are 10-fold more potent than those of morphine (Hemby et al., 2018). 
While beyond the scope of the current study, future studies of the 
antinociceptive effects of the other individual constitutive components 
of kratom would be of mechanistic value. 

LKT (1 g/kg, p.o.) produced less hyperlocomotion and respiratory 
depression than might be expected of a MOR agonist such as morphine. 
The cause for this difference is not clear. Historically, case studies with 
kratom tea users report that low doses of the tea produced stimulant-like 
effects (Grewal, 1932), whereas doses above 5 grams of dried leaves 
reportedly produced effects similar to opioids (Prozialeck et al., 2012) 

and sedation (Boyer et al., 2008; Grewal, 1932). Increased locomotion is 
a characteristic sign of MOR activation in rodents (Zhang and Kong, 
2017), as is respiratory depression mediated by activation of MOR on 
respiratory centers in the medulla (Martin, 1983). Of interest, LKT 
showed increased respiration in MOR KO mice. The nor-BNI data in this 
assay implicates KOR mediation of the increased respiration, as sug
gested by earlier reports (Dosaka-Akita et al., 1993). Even modest KOR 
agonist activity has been shown to offset the respiratory depression 
induced by MOR agonism in multifunctional opioid agonists (Brice-Tutt 
et al., 2020). Alternatively, the changes in respiration may be due to 
physical inactivity or non-opioid activity. Mice treated with LKT show 
no significant signs of inactivity in CLAMS-measured ambulations or in 
the rotarod assays, potentially discounting the involvement of physical 
inactivity. However, the individual alkaloid mitragynine has been re
ported to possess relevant non-opioid activity, activating dopamine-2 
(D2) and serotonin receptors (Lydecker et al., 2016), both of which 
modulate respiration and which warrant future examination. 

Previous studies established that MOR agonists such as morphine are 
rewarding (Ballantyne and LaForge, 2007; Kreek and Koob, 1998). 
Rewarding effects are attributed to the agonist-induced suppression of 
inhibitory interneurons, thereby indirectly increasing the activity of 
dopaminergic A10 neurons in the brain reward pathway (Matthes et al., 
1996). With MOR-mediated antinociception, it might be expected that 
LKT would be rewarding. Instead, LKT produced no rewarding effects in 
a CPP assay. In previous studies, mitragynine itself was sufficient to 
decrease self-administration of MOR agonists (Hemby et al., 2018). The 
possibility of an underlying multifunctional interaction is further sup
ported by report of mitragynine dose-dependent decreases in operant 
responding for food in rats that was not blocked by naltrexone, but was 
attributed to an interaction with alpha-2 adrenergic receptors (Hiranita 
et al., 2019). Supporting this, recent reports confirm kratom alkaloids 
possess micromolar affinity for the adrenergic receptors (Obeng et al., 
2020). 

Although clinical surveys suggest discontinuation of kratom by reg
ular users may result in opioid withdrawal symptoms (Warner et al., 
2016), repeated administration of LKT presently demonstrated less 
physical dependence than morphine. Compared to methadone, a sig
nificant reduction of withdrawal symptoms was observed with repeated 
oral dosing of LKT (1 g/kg, see supplemental data). LKT (2 g/kg, p.o.) 
showed increased withdrawal liability with a reduction of locomotor 
activity, increased wet dog shakes, and a reduced weight gain, but these 
were less than demonstrated with morphine-treated mice. Admittedly, 
studies of prolonged LKT exposure and at higher doses may demonstrate 
greater adverse effects (see supplement), but these results support the 
anecdotal claim that kratom produces less physical dependence than 
MOR agonists such as morphine. 

Historically, treatments ameliorating opioid withdrawal syndrome 
reduce opioid cravings and withdrawal signs but suffer from limitations. 
Both methadone and buprenorphine possess partial mu agonism thought 
to prevent full agonist effects such as respiratory depression (McCam
bridge et al., 2007). However, treatment with buprenorphine is poorly 
tolerated by patients due to the precipitation of a withdrawal syndrome 
if used too soon after ingestion of opioid agonists (Hassan et al., 2020). 
Likewise, methadone treatment is sometimes not well tolerated and 
associated with increased physical dependence over time (Dart et al., 
2005; Strang and Gossop, 1990). Alpha-2 adrenergic receptor agonists 
such as clonidine and lofexidine alleviate some autonomic symptoms of 
opioid withdrawal, attributed to the suppression of withdrawal-induced 
locus coeruleus hyperactivity (Gold et al., 1978; Hicks and Muvvala, 
2018), However, these drugs are less effective in preventing some 
symptoms of opioid withdrawal, including insomnia, lethargy and 
muscle aches (Jasinski et al., 1985), are ineffective in minimizing opioid 
craving (Charney et al., 1986), and produce potentially dangerous 
anticholinergic effects such as hypotension (Jasinski et al., 1985). Given 
the drawbacks of current treatments, the need for alternative treatments 
persists. 

Fig. 6. Assessment of LKT’s ability to produce direct treatment-induced phys
ical dependence and reduce naloxone precipitated opioid withdrawal symptoms 
(i.e. jumping (A) and teeth chattering (B)) in morphine dependent mice. Vehicle 
(saline, i.p.), morphine (10-75 mg/kg, i.p.), MS (10-75 mg/kg, ip) + LKT (100 
mg/kg, p.o.), morphine (10-80 mg/kg, i.p.) + an acute dose of LKT (40 mg/kg, 
p.o.), morphine (10-75 mg/kg, i.p.) + tapering doses of LKT (100-40 mg/kg, p. 
o.), and LKT (30-125 mg/kg, p.o.) were evaluated for opioid withdrawal 
symptoms after administration of naloxone (10 mg/kg, s.c.). * p < 0.05 versus 
vehicle control, One-way ANOVA with Tukey’s multiple comparisons post-hoc 
test. n = 9-10 mice/treatment. †Mean and SEM lower than 1. 
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A major finding of the current study was that orally administered 
LKT at doses up to 2 g/kg were able to significantly reduce naloxone- 
precipitated opioid withdrawal in morphine-dependent subjects. After 
repeated dosing with morphine, substitution with lower oral doses of 
LKT attenuated symptoms of physical naloxone-precipitated with
drawal, although in the higher doses there was a lack of rebounding in 
weight and increased tremors. This discrepancy could be due to the 
persistence of reduced appetite and increased tremor that were shown in 
the direct measure of physical dependence in subjects treated repeatedly 
with LKT, an effect also suggested in the literature (Singh et al., 2014). 
Acute dosing with LKT also significantly reduced some withdrawal 
symptoms, indicating that the acute use of low doses during the initial 
abstinence from chronic opioid abuse may have some therapeutic rele
vance. Janchawee et al. (2007) reported that oral doses (40 mg/kg) of 
kratom tea’s main constituent, mitragynine, are quickly absorbed yet 
have a half-life of over 9 hours. If acting as a MOR agonist, it is possible 
the long half-life may simply provide prolonged competition from either 
antagonist-precipitated or spontaneous physical withdrawal. Alterna
tively, it is possible that kratom tea may be acting through non-opioid 
means such as alpha-2-adrenergic receptor activity to ameliorate 
opioid withdrawal. Supporting this, selected kratom alkaloids were 
recently reported to possess micromolar affinity for the adrenergic re
ceptors (Obeng et al., 2020). The negative effects of alpha-2-adrenergic 
receptor agonists were not evaluated after LKT administration, although 
characteristic sedation was not observed. Overall, while more safety and 
mechanistic studies are needed, the present findings validate the clinical 
reports where consumption of kratom tea may offset opioid physical 
dependence. 

4.1. Conclusion 

Kratom tea induces antinociception predominately via mu opioid 
receptor agonism in mice. The optimal dose of kratom tea used in these 
studies did not induce respiratory depression or conditioned place 
preference. Moreover, acute doses of kratom tea as low as a single dose 
of 40 mg/kg (p.o.) effectively reduced withdrawal symptoms without 
sedation. While multifunctional pharmacological contributions of the 
individual major and minor components of Mitragyna speciosa (Korth.) 
Havil. to the overall effect of LKT remain to be investigated, this study 
suggests that kratom tea and/or the alkaloid components it contains 
could be prime candidates for the treatment of pain and opioid physical 
dependence. 
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